IEC 60268-5: Effective frequency range AN 35

Application Note to the KLIPPEL ANALYZER SYSTEM (Document Revision 1.1)

The effective frequency range is a common characteristic of a loudspeaker and defined by the IEC standard 60268-5 paragraph 21.2 [1]. It describes the range of a requested linearity within the frequency response, where the sound pressure level is not more than 10 dB below an averaged maximum.

This Application Note is a step by step introduction for a fast calculation of the Effective Frequency Range with the appropriate Klippel Template.

CONTENTS:

2	Definition	1
3	Requirements	1
4	Procedure	2
5	More Information	2

1 Definition

EFFECTIVE FREQUENCY RANGE

The effective frequency range is the range of frequencies, bounded by stated upper and lower limits (f_up and f_low) for which the transfer function of a loudspeaker does not drop more than 10 dB below the mean value (mSPL according to IEC standard [2]) of the sound pressure level within a determined band. This band is by default one octave or broader (according to the demands of the manufacturer) in the region of the maximum sound pressure level.

Notches narrower than 1/9 octave will not be regarded by definition of IEC standard [1].

2 Requirements

START UP

To measure and calculate the Effective Frequency Range the following equipment is required:

- Install the RnD Analysis Software on your computer
- Create a new object and select the template *IEC 60268-5 §21.2*Frequency Range to start the analysis
- Enter the sensitivity of the microphone in property page *Input* of the operation 1 TRF Measure FUNDAMENTAL or use a pistonphone to calibrate the microphone.

3 Procedure

TRF MEASUREMENT	Motivation: We start with a simple sinusoidal sweep measurement to gain the Transfer Function of the Loudspeaker. How to do it: Adjust the measurement microphone normal to the driver as preferred and select the 1 TRF Measure FUNDAMENTAL operation. In Properties → Stimulus set F _{min} to a lower and F _{max} to a higher value than the boundary frequencies of the expected effective frequency range and modify the voltage if necessary. Run the measurement. Select the curve "Fundamental" from the window Fundamental + Harmonic distortion components and copy it to the clipboard.
DETERMINATION OF THE EFFECTIVE FREQUENCY RANGE	Motivation: The effective frequency range can easily be determined by the operation 2 CAL Effective frequency range, which will automatically find the octave band with the highest sensitivity but can also be modified if required. How to do it: Select SP in Properties \rightarrow Input of 2 CAL Effective frequency range and paste the Fundamental curve from Clipboard. If you want to use the standard calculation which determines the optimal averaging band (according to IEC standard [1]) select the automatic mode by entering the string 'auto' in mod and there is no input required for f_{min} or f_{max} . Otherwise you may determine your averaging band as you like by defining the frequency bounds f_{min} and f_{max} and selecting the 'user' mode.
RESULTS	After running the script the <i>Result Variables</i> window will appear showing following result parameters. If an error occurred it will be displayed in the result variables window as well. The variables \mathbf{f} _low and \mathbf{f} _up return the lower and upper boarder of your frequency range according to the definition of IEC standard [1]. In the second table you will find some additional data relevant variables within the calculation. \mathbf{mSPL} is the mean sound pressure level weighted over logarithmic frequency scale within the boarders \mathbf{f}_{\min} and \mathbf{f}_{\max} which are ½ octave below and above the frequency with the maximum SPL in auto mode. The \mathbf{width} is the bandwidth of this averaging band, which must be at least one octave to observe the IEC standard [1].

4 More Information

APPLICATION NOTE	AN34 – IEC 60268-5: Mean sound-pressure level in a stated frequency band
STANDARDS	[1] IEC standard 60268-5 Sound System Equipment – Part 5 Loudspeakers, 21.2 Effective frequency range
	[2] IEC standard 60268-5 Sound System Equipment – Part 5 Loudspeakers, 20.6 Mean sound-pressure level in a stated frequency band

Find explanations for symbols at:

http://www.klippel.de/know-how/literature.html

Last updated: 12.08.2016

